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Problem Statement

The analysis considers an isochoric deformation process [1] defined by the following strain
rate parameters:

ε̇11 = K, ε̇22 = −K, ε̇33 = ε̇12 = 0, ε̇13 = ε̇23 = 0.5K

K represents a piece-wise function that takes the strain rate values as shown in Table
1. Material constants including Young’s Modulus, Poisson’s Ratio, rate sensitivity constant
m, plastic modulus h, and initial yield stress are known. Additionally it is known that both
stress and strain of the sample is zero at t = 0. Given the strain rate history, the goal
of the analysis is to calculate stress and strain values at a new time τ where τ = t + ∆t.
Both explicit and implicit time integration schemes are used to simulate the elastic-plastic
deformation process. MATLAB is utilized to complete each integration scheme and create
stress-strain curves in the 11, 22, and 23 directions. The explicit and implicit methods each
have different strengths that will become apparent throughout the analysis.

Methods

The explicit method of integration involves directly solving for σ(τ) and s(τ) using known
values at time t. The two equations being solved in the explicit method are [2]

σ(τ) = (C(ε̇− 3

2
ε̇o(
σ̄(t)

s(t)
)1/m ∗ σ′(t)

σ̄(t)
)∆t+ σ(t)

s(τ) = (hε̇o(
σ̄(t)

s(t)
)1/m)∆t+ s(t)

These equations are solved at each time step and used to update the stress and strain
values in the desired directions. At the end of the predefined time domain, the stress and
strain can be graphed to study the material response.

The implicit response, in contrast to the explicit, takes into account properties both at
the current time step and the next time step. This method utilizes an initial guess that is
updated at each iteration. Mathematical substitutions and an isotropic material assumption
allow the original 7x7 system can be reduced to two equations with two unknowns: σ̄(τ) and
s(τ). Then, a multivariate Newton-Raphson method is applied to find the roots of the two
equations below

f1 = σ̄∗ − σ̄(τ) − 3µε̇o∆t(
σ̄(t)

s(t)

1/m

) = 0

f2 = s(τ) − (hε̇o∆t(
σ̄(t)

s(t)
)1/m) − s(t) = 0

After using the derivatives of each function to build the Jacobian, the solution for σ̄ and
s is updated. Until the desired tolerance of the solution is met, the iterations continue. After
the roots of the equations have been identified, σ̄ is plugged back in to find the solution for
the components of the deviatoric stress tensor and finally the overall stress tensor.



Analysis

The explicit scheme is implemented first. This method is easy to code as it consists
mainly of a for loop that solves the two equations for σ(τ) and s(τ) on each iteration and
updates the stress and strain values in the 11, 22, and 23 directions. The ∆T parameter is
defined as the total time span of 40 seconds divided by the length of the strain rate vector.
Two different explicit integrations were performed while changing ∆T from .01s initially to
.001. A second integration is needed because a time step of .01 is not small enough to get
the explicit method to converge. This is clearly seen in the blue plotted line in Figures 1,
2, and 3. While the explicit solution at .01s tracks well with the others, it is very jagged
and spiky all throughout which communicates the solution hasn’t converged. Repeating this
same process at with a larger strain rate vector, and consequently a smaller ∆t of .001s,
the solution converges much more cleanly. This solution is plotted on Figures 1, 2, and 3
in red. Using the tic/toc functions in MATLAB, the computing time for the first explicit
integration is .0168s while the smaller time step integration with correct convergence takes
.0889s, over five times longer.

Finally, the implicit scheme is coded and implemented. This code is significantly more
complex than the explicit scheme as it starts with an initial guess to help solve equations f1
and f2, and then used a multivariate Newton-Raphson method to continually improve the
accuracy of the solution. The code requires nested for loops, and it recalculates the deriva-
tives of f1 and f2 each iteration to develop the Jacobian matrix. However, the advantages
of this method become clear very quickly upon deciding the length of the strain rate vector
and the value of ∆t. I ultimately decided that a ∆t of .1 seconds was plenty sufficient for
convergence. The implicit scheme deformation solution for the three desired directions is
plotted in black in Figures 1, 2, and 3. The implicit solution is visually identical to the
explicit solution graphed in red, and it has a ∆t value 100 times larger. This exemplifies the
ease of convergence that implicit methods offer above explicit methods. The computational
time required for the implicit solution is .0599s, which is significantly less than the converged
explicit method.

Figures 4, 5, and 6 show stress over time for the 3 desired components of the strain
tensor. Similar jaggedness is observed in Figure 4 for the explicit scheme when ∆t is .01s.
The jagged peaks disappear in Figure 5 when the time step is decreased to .001s. Figure 5
and Figure 6, with the implicit scheme, are visually identical with the stress reponses over
time.

Conclusion

Overall, the solution of this isochoric elastic-plastic deformation process has exemplified
the strengths and weaknesses of explicit and implicit numerical integration schemes. Explicit
schemes, while more simplistic mathematically and easier to code, require time steps orders
of magnitude smaller than implicit schemes to converge properly. Due to this significantly
smaller time step, explicit solutions take longer to compute. Implicit schemes are more
mathematically rigorous because they include information about the process both at the
current time and the next time step. This makes them slightly harder to implement, but the
extra effort quickly pays off with the decrease in time step for convergence and a decrease in
computation time.
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Appendix

Tables

Strain Rate K Time (s)

.002 s−1 0 ≤ t < 10
-.001 s−1 10 ≤ t < 30
.001 s−1 30 ≤ t < 40

Table 1: K Parameter Values

Figures

Figure 1: Response in 11 Direction
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Figure 2: Response in 22 Direction
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Figure 3: Response in 23 Direction
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Figure 4: Stress vs. Time for Explicit Scheme with dt=.01
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Figure 5: Stress vs. Time for Explicit Scheme with dt=.001
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Figure 6: Stress vs. Time for Implicit Scheme with dt=.1
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Matlab Code

% ME 6203 Time I n t e g r a t i o n Scheme
% Pie r ce Heintzelman
c l e a r
c l c
c l f

% Star t with e x p l i c i t scheme

% Known Constants
E = 100 e9 ; %Pa
nu = 0 . 3 ;

% Shear Modulus
mu=E/2/(1+nu ) ;
k = E/3/(1−2∗nu ) ;
lam = k−2/3∗mu;

% Tensor − Reduced Form 6x6
C=[ [ lam+2∗mu, lam , lam , 0 , 0 , 0 ] ; [ lam , lam+2∗mu, lam , 0 , 0 , 0 ] ; . . .

[ lam , lam , lam+2∗mu, 0 , 0 , 0 ] ; [ 0 , 0 , 0 , 2 ∗mu, 0 , 0 ] ; . . .
[ 0 , 0 , 0 , 0 , 2∗mu, 0 ] ; [ 0 , 0 , 0 , 0 , 0 , 2 ∗mu ] ] ;

% p l a s t i c i t y parameters
edot = 0 . 0 0 1 ;
m = 0 . 0 1 ;
h = 1000 e6 ; %Pa
so = 100 e6 ; %I n i t i a l Yie ld S t r e s s in PA

% I n i t i a l s t r a i n based on problem statemnt
eo = [ . 0 0 2∗ ones (1000 , 1 ) ’ , −.001∗ ones (1000 , 1 ) ’ , −.001∗ ones ( 1 0 0 0 , 1 ) ’ , . . .

. 001∗ ones ( 1 0 0 0 , 1 ) ’ ] ;

% I n i t i a l i z e s t r e s s
sigma0 = [ 0 , 0 , 0 , 0 , 0 , 0 ] ’ ;

t t ime = 40 ;

dtime = tt ime / length ( eo ) ;
t = dtime : dtime : 4 0 ;
%I n i t i a l i z e a r rays
s i g11 = ze ro s ( l ength ( eo ) , 1 ) ;
s i g 22 = ze ro s ( l ength ( eo ) , 1 ) ;
s i g 23 = ze ro s ( l ength ( eo ) , 1 ) ;
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e11 = ze ro s ( l ength ( eo ) , 1 ) ;
e22 = ze ro s ( l ength ( eo ) , 1 ) ;
e23 = ze ro s ( l ength ( eo ) , 1 ) ;

t i c
f o r i = 1 : l ength ( eo )

i f i == 1
s igma t = sigma0 ;
s t = so ;

end
s i g11 ( i ) = s igma t ( 1 ) ;
s i g 22 ( i ) = s igma t ( 2 ) ;
s i g 23 ( i ) = s igma t ( 6 ) ;

e r a t e = [ eo ( i ) ,−1∗ eo ( i ) , 0 , 0 , 0 .5∗ eo ( i ) , 0 .5∗ eo ( i ) ] ’ ;

% Keeping t rack o f s t r a i n
i f i>=2

e11 ( i ) = e11 ( i −1) + e ra t e (1)∗ dtime ;
e22 ( i ) = e22 ( i −1) + e ra t e (2)∗ dtime ;
e23 ( i ) = e23 ( i −1) + e ra t e (6)∗ dtime ;

end

mi s e s t = s q r t ( 0 . 5 ∗ ( ( s igma t (1)− s igma t (2 ) )ˆ2 + . . .
( s igma t (2 ) − s igma t (3 ) )ˆ2 . . .

+ ( s igma t (1 ) − s igma t (3))ˆ2+3∗( s igma t (4)ˆ2+ sigma t ( 5 ) ˆ 2 + . . .
s igma t ( 6 ) ˆ 2 ) ) ) ;
peeqdot = edot ∗ ( m i s e s t / s t )ˆ(1/m) ;
p r e s s = ( s igma t (1 ) + s igma t (2 ) + s igma t ( 3 ) ) / 3 ;
dev t = s igma t − pre s s ∗ [ 1 , 1 , 1 , 0 , 0 , 0 ] ’ ;
i f m i s e s t==0

epdot = [ 0 , 0 , 0 , 0 , 0 , 0 ] ’ ;
e l s e

epdot = 3/2∗ peeqdot∗dev t / mi s e s t ;
end
% update s t r e s s and s t r ength va lue s

s igma tau = C ∗ ( erate−epdot )∗ dtime + sigma t ;
s igma t = sigma tau ;
s tau = h∗peeqdot∗dtime + s t ;
s t = s tau ;

end
toc
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hold on

f i g u r e (1 )
p l o t ( e11 , s i g 11 )

f i g u r e (2 )
p l o t ( e22 , s i g 22 )

f i g u r e (3 )
p l o t ( e23 , s i g 23 )

f i g u r e (4 )
p l o t ( t , s ig11 , t , s ig22 , t , s i g 23 )
x l a b e l ( ’ Time [ s ] ’ )
y l a b e l ( ’ S t r e s s [ Pa ] ’ )
l egend ( ’11 Direct ion ’ , ’ 2 2 Direct ion ’ , ’23 Direct ion ’ , ’ Location ’ , ’ northwest ’ )
ylim ([ −1.1 e8 1 .1 e8 ] )

%DT = .001
% I n i t i a l s t r a i n based on problem statemnt
eo = [ . 0 0 2∗ ones (10000 ,1 ) ’ , −.001∗ ones (10000 ,1 ) ’ , −.001∗ ones ( 1 0 0 0 0 , 1 ) ’ , . . .

. 001∗ ones ( 1 0 0 0 0 , 1 ) ’ ] ;

% I n i t i a l i z e s t r e s s
sigma0 = [ 0 , 0 , 0 , 0 , 0 , 0 ] ’ ;

t t ime = 40 ;

dtime = tt ime / length ( eo ) ;
t = dtime : dtime : 4 0 ;
%I n i t i a l i z e a r rays
s i g11 = ze ro s ( l ength ( eo ) , 1 ) ;
s i g 22 = ze ro s ( l ength ( eo ) , 1 ) ;
s i g 23 = ze ro s ( l ength ( eo ) , 1 ) ;
e11 = ze ro s ( l ength ( eo ) , 1 ) ;
e22 = ze ro s ( l ength ( eo ) , 1 ) ;
e23 = ze ro s ( l ength ( eo ) , 1 ) ;

t i c
f o r i = 1 : l ength ( eo )

i f i == 1
s igma t = sigma0 ;
s t = so ;

end
s i g11 ( i ) = s igma t ( 1 ) ;
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s i g 22 ( i ) = s igma t ( 2 ) ;
s i g 23 ( i ) = s igma t ( 6 ) ;

e r a t e = [ eo ( i ) ,−1∗ eo ( i ) , 0 , 0 , 0 .5∗ eo ( i ) , 0 .5∗ eo ( i ) ] ’ ;

% Keeping t rack o f s t r a i n
i f i>=2

e11 ( i ) = e11 ( i −1) + e ra t e (1)∗ dtime ;
e22 ( i ) = e22 ( i −1) + e ra t e (2)∗ dtime ;
e23 ( i ) = e23 ( i −1) + e ra t e (6)∗ dtime ;

end

mi s e s t = s q r t ( 0 . 5 ∗ ( ( s igma t (1)− s igma t (2 ) )ˆ2 + . . .
( s igma t (2 ) − s igma t (3 ) )ˆ2 . . .

+ ( s igma t (1 ) − s igma t (3))ˆ2+3∗( s igma t ( 4 ) ˆ 2 + . . .
s igma t (5)ˆ2+ sigma t ( 6 ) ˆ 2 ) ) ) ;
peeqdot = edot ∗ ( m i s e s t / s t )ˆ(1/m) ;
p r e s s = ( s igma t (1 ) + s igma t (2 ) + s igma t ( 3 ) ) / 3 ;
dev t = s igma t − pre s s ∗ [ 1 , 1 , 1 , 0 , 0 , 0 ] ’ ;
i f m i s e s t==0

epdot = [ 0 , 0 , 0 , 0 , 0 , 0 ] ’ ;
e l s e

epdot = 3/2∗ peeqdot∗dev t / mi s e s t ;
end
% update s t r e s s and s t r ength va lue s

s igma tau = C ∗ ( erate−epdot )∗ dtime + sigma t ;
s igma t = sigma tau ;
s tau = h∗peeqdot∗dtime + s t ;
s t = s tau ;

end
toc

f i g u r e (1 )
hold on
p lo t ( e11 , s ig11 , ’ r ’ )
x l a b e l ( ’ e p s i l o n 11 [m/m] ’ )
y l a b e l ( ’ sigma 11 [ Pa ] ’ )
% t i t l e ( ’ Response in 11 Direct ion ’ )
l egend ( ’ E x p l i c i t dt = . 0 1 ’ , ’ E x p l i c i t dt = . 0 0 1 ’ )

f i g u r e (2 )
hold on
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p lo t ( e22 , s ig22 , ’ r ’ )
x l a b e l ( ’ e p s i l o n 22 [m/m] ’ )
y l a b e l ( ’ sigma 22 [ Pa ] ’ )
% t i t l e ( ’ Response in 22 Direct ion ’ )
l egend ( ’ E x p l i c i t dt = . 0 1 ’ , ’ E x p l i c i t dt = . 0 0 1 ’ )

f i g u r e (3 )
hold on
p lo t ( e23 , s ig23 , ’ r ’ )
x l a b e l ( ’ e p s i l o n 23 [m/m] ’ )
y l a b e l ( ’ sigma 23 [ Pa ] ’ )
% t i t l e ( ’ Response in 23 Direct ion ’ )
l egend ( ’ E x p l i c i t dt = . 0 1 ’ , ’ E x p l i c i t dt = . 0 0 1 ’ )

f i g u r e (5 )
p l o t ( t , s ig11 , t , s ig22 , t , s i g 23 )
x l a b e l ( ’ Time [ s ] ’ )
y l a b e l ( ’ S t r e s s [ Pa ] ’ )
l egend ( ’11 Direct ion ’ , ’ 2 2 Direct ion ’ , ’23 Direct ion ’ , ’ Location ’ , ’ northwest ’ )
ylim ([ −1.1 e8 1 .1 e8 ] )

%I m p l i c i t Scheme

%I n i t i a l i z e a r rays

eo = [ . 0 0 2∗ ones (100 , 1 ) ’ , −.001∗ ones (100 , 1 ) ’ , −.001∗ ones ( 1 0 0 , 1 ) ’ , . . .
. 001∗ ones ( 1 0 0 , 1 ) ’ ] ;

s i g 11 = ze ro s ( l ength ( eo ) , 1 ) ;
s i g 22 = ze ro s ( l ength ( eo ) , 1 ) ;
s i g 23 = ze ro s ( l ength ( eo ) , 1 ) ;
e11 = ze ro s ( l ength ( eo ) , 1 ) ;
e22 = ze ro s ( l ength ( eo ) , 1 ) ;
e23 = ze ro s ( l ength ( eo ) , 1 ) ;

dtime = tt ime / length ( eo ) ;
t = dtime : dtime : 4 0 ;

t o l = 1e−3; %s e t t o l e r a n c e
t i c
f o r i = 1 : l ength ( eo )

i f i==1
s igma t = sigma0 ;
s t = so ;
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end
s i g11 ( i ) = s igma t ( 1 ) ;
s i g 22 ( i ) = s igma t ( 2 ) ;
s i g 23 ( i ) = s igma t ( 6 ) ;

%s t r a i n ra t e at cur rent time step
e ra t e = [ eo ( i ) ,−1∗ eo ( i ) , 0 , 0 , 0 .5∗ eo ( i ) , 0 .5∗ eo ( i ) ] ’ ;

% s t r a i n ( tau ) = s t r a i n ( t ) + s t r a i n r a t e ∗dtime
i f i>=2

e11 ( i ) = e11 ( i −1)+e ra t e (1)∗ dtime ;
e22 ( i ) = e22 ( i −1)+e ra t e (2)∗ dtime ;
e23 ( i ) = e23 ( i −1)+e ra t e (6)∗ dtime ;

end

%c a l c u l a t e t r i a l s t r e s s e s − e l a s t i c p r e d i c t o r
s i g t r = C∗ e r a t e ∗dtime+sigma t ;
p r e s s = ( s i g t r (1 ) + s i g t r (2 ) + s i g t r ( 3 ) ) / 3 ;
dev t r = s i g t r − pre s s ∗ [ 1 , 1 , 1 , 0 , 0 , 0 ] ’ ;

% Find mises equ iva l en t o f t and t r i a l s t r e s s
m i s e s t = s q r t ( 0 . 5 ∗ ( ( s igma t (1)− s igma t (2 ) )ˆ2 + . . .
( s igma t (2 ) − s igma t (3 ) )ˆ2 . . .

+ ( s igma t (1 ) − s igma t (3))ˆ2+3∗( s igma t ( 4 ) ˆ 2 + . . .
s igma t (5)ˆ2+ sigma t ( 6 ) ˆ 2 ) ) ) ;
m i s e s t r = s q r t ( 0 . 5 ∗ ( ( s i g t r (1)− s i g t r (2 ) )ˆ2 + . . .
( s i g t r (2 ) − s i g t r (3 ) )ˆ2 . . .

+ ( s i g t r (1 ) − s i g t r (3))ˆ2+3∗( s i g t r ( 4 ) ˆ 2 + . . .
s i g t r (5)ˆ2+ s i g t r ( 6 ) ˆ 2 ) ) ) ;

%Newton Raphson i t e r a t i o n s
mise s tau = m i s e s t r ;
s t au = s t ;
f o r j = 1:500

peeqdot = edot ∗( mise s tau / s tau )ˆ(1/m) ;
g1 = mise s t r−mises tau − 3∗mu∗peeqdot∗dtime ;
g2 = s tau−s t−h∗peeqdot∗dtime ;
g = [ g1 g2 ] ’ ;
y = [ mise s tau s tau ] ’ ;
g1m = −1−3∗mu∗ edot∗dtime/m∗ ( ( mise s tau / s tau )ˆ(1/m−1))/ s tau ;
g1s = 3∗mu∗dtime/m∗peeqdot / s tau ;
g2m = −1∗h∗ edot∗dtime/m∗ ( ( mise s tau / s tau )ˆ(1/m−1))/ s tau ;
g2s = 1+h∗dtime/m∗peeqdot / s tau ;
J = [ [ g1m g1s ] ; [ g2m g2s ] ] ;
y = y−( inv ( J ) )∗ g ;
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mises tau = y ( 1 ) ;
s t au = y ( 2 ) ;
i f abs ( g1)< t o l ∗ so && abs ( g2 ) < t o l ∗ so

break
end
i f j==50

di sp ( ’ I m p l i c i t method not converged . ’ )
end

end
c o r r f = 1+3∗mu∗ edot∗dtime ∗( mise s tau / s tau )ˆ(1/m−1)/ s tau ;
dev tau = dev t r / c o r r f ;
s igma tau = dev tau+pre s s ∗ [ 1 , 1 , 1 , 0 , 0 , 0 ] ’ ;

%s t r e s s s t r ength update
s igma t = sigma tau ;
s t = s tau ;

end
toc

f i g u r e (1 )
hold on
p lo t ( e11 , s ig11 , ’ k ’ )
l egend ( ’ E x p l i c i t dt = . 0 1 ’ , ’ E x p l i c i t dt = . 0 0 1 ’ , ’ I m p l i c i t dt = . 1 ’ )

f i g u r e (2 )
hold on
p lo t ( e22 , s ig22 , ’ k ’ )
l egend ( ’ E x p l i c i t dt = . 0 1 ’ , ’ E x p l i c i t dt = . 0 0 1 ’ , ’ I m p l i c i t dt = . 1 ’ )

f i g u r e (3 )
hold on
p lo t ( e23 , s ig23 , ’ k ’ )
l egend ( ’ E x p l i c i t dt = . 0 1 ’ , ’ E x p l i c i t dt = . 0 0 1 ’ , ’ I m p l i c i t dt = . 1 ’ )

f i g u r e (6 )
p l o t ( t , s ig11 , t , s ig22 , t , s i g 23 )
x l a b e l ( ’ Time [ s ] ’ )
y l a b e l ( ’ S t r e s s [ Pa ] ’ )
l egend ( ’11 Direct ion ’ , ’ 2 2 Direct ion ’ , ’23 Direct ion ’ , ’ Location ’ , ’ northwest ’ )
ylim ([ −1.1 e8 1 .1 e8 ] )
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